\(\int \sqrt {b \tan ^3(e+f x)} \, dx\) [9]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 255 \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=\frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}+\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \sqrt {b \tan ^3(e+f x)}}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (e+f x)}\right ) \sqrt {b \tan ^3(e+f x)}}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}+\frac {\log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \sqrt {b \tan ^3(e+f x)}}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \sqrt {b \tan ^3(e+f x)}}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)} \]

[Out]

2*cot(f*x+e)*(b*tan(f*x+e)^3)^(1/2)/f-1/2*arctan(-1+2^(1/2)*tan(f*x+e)^(1/2))*(b*tan(f*x+e)^3)^(1/2)/f*2^(1/2)
/tan(f*x+e)^(3/2)-1/2*arctan(1+2^(1/2)*tan(f*x+e)^(1/2))*(b*tan(f*x+e)^3)^(1/2)/f*2^(1/2)/tan(f*x+e)^(3/2)+1/4
*ln(1-2^(1/2)*tan(f*x+e)^(1/2)+tan(f*x+e))*(b*tan(f*x+e)^3)^(1/2)/f*2^(1/2)/tan(f*x+e)^(3/2)-1/4*ln(1+2^(1/2)*
tan(f*x+e)^(1/2)+tan(f*x+e))*(b*tan(f*x+e)^3)^(1/2)/f*2^(1/2)/tan(f*x+e)^(3/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3739, 3554, 3557, 335, 217, 1179, 642, 1176, 631, 210} \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \sqrt {b \tan ^3(e+f x)}}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\arctan \left (\sqrt {2} \sqrt {\tan (e+f x)}+1\right ) \sqrt {b \tan ^3(e+f x)}}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}+\frac {\sqrt {b \tan ^3(e+f x)} \log \left (\tan (e+f x)-\sqrt {2} \sqrt {\tan (e+f x)}+1\right )}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\sqrt {b \tan ^3(e+f x)} \log \left (\tan (e+f x)+\sqrt {2} \sqrt {\tan (e+f x)}+1\right )}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}+\frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f} \]

[In]

Int[Sqrt[b*Tan[e + f*x]^3],x]

[Out]

(2*Cot[e + f*x]*Sqrt[b*Tan[e + f*x]^3])/f + (ArcTan[1 - Sqrt[2]*Sqrt[Tan[e + f*x]]]*Sqrt[b*Tan[e + f*x]^3])/(S
qrt[2]*f*Tan[e + f*x]^(3/2)) - (ArcTan[1 + Sqrt[2]*Sqrt[Tan[e + f*x]]]*Sqrt[b*Tan[e + f*x]^3])/(Sqrt[2]*f*Tan[
e + f*x]^(3/2)) + (Log[1 - Sqrt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]*Sqrt[b*Tan[e + f*x]^3])/(2*Sqrt[2]*f*Tan
[e + f*x]^(3/2)) - (Log[1 + Sqrt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]*Sqrt[b*Tan[e + f*x]^3])/(2*Sqrt[2]*f*Ta
n[e + f*x]^(3/2))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3739

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[(b*ff^n)^IntPart[p]*((b*Tan[e + f*x]^n)^FracPart[p]/(Tan[e + f*x]/ff)^(n*FracPart[p])), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {b \tan ^3(e+f x)} \int \tan ^{\frac {3}{2}}(e+f x) \, dx}{\tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}-\frac {\sqrt {b \tan ^3(e+f x)} \int \frac {1}{\sqrt {\tan (e+f x)}} \, dx}{\tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}-\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f \tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}-\frac {\left (2 \sqrt {b \tan ^3(e+f x)}\right ) \text {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\sqrt {\tan (e+f x)}\right )}{f \tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}-\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (e+f x)}\right )}{f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (e+f x)}\right )}{f \tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}-\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 f \tan ^{\frac {3}{2}}(e+f x)}+\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}+\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (e+f x)}\right )}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}+\frac {\log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \sqrt {b \tan ^3(e+f x)}}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \sqrt {b \tan ^3(e+f x)}}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (e+f x)}\right )}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}+\frac {\sqrt {b \tan ^3(e+f x)} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (e+f x)}\right )}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)} \\ & = \frac {2 \cot (e+f x) \sqrt {b \tan ^3(e+f x)}}{f}+\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right ) \sqrt {b \tan ^3(e+f x)}}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (e+f x)}\right ) \sqrt {b \tan ^3(e+f x)}}{\sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}+\frac {\log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \sqrt {b \tan ^3(e+f x)}}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)}-\frac {\log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right ) \sqrt {b \tan ^3(e+f x)}}{2 \sqrt {2} f \tan ^{\frac {3}{2}}(e+f x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.64 \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=\frac {\left (\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (e+f x)}\right )}{\sqrt {2}}-\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (e+f x)}\right )}{\sqrt {2}}+\frac {\log \left (1-\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right )}{2 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} \sqrt {\tan (e+f x)}+\tan (e+f x)\right )}{2 \sqrt {2}}+2 \sqrt {\tan (e+f x)}\right ) \sqrt {b \tan ^3(e+f x)}}{f \tan ^{\frac {3}{2}}(e+f x)} \]

[In]

Integrate[Sqrt[b*Tan[e + f*x]^3],x]

[Out]

((ArcTan[1 - Sqrt[2]*Sqrt[Tan[e + f*x]]]/Sqrt[2] - ArcTan[1 + Sqrt[2]*Sqrt[Tan[e + f*x]]]/Sqrt[2] + Log[1 - Sq
rt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]/(2*Sqrt[2]) - Log[1 + Sqrt[2]*Sqrt[Tan[e + f*x]] + Tan[e + f*x]]/(2*S
qrt[2]) + 2*Sqrt[Tan[e + f*x]])*Sqrt[b*Tan[e + f*x]^3])/(f*Tan[e + f*x]^(3/2))

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.82

method result size
derivativedivides \(-\frac {\sqrt {b \tan \left (f x +e \right )^{3}}\, \left (\left (b^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (-\frac {b \tan \left (f x +e \right )+\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {b^{2}}}{\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}-b \tan \left (f x +e \right )-\sqrt {b^{2}}}\right )+2 \left (b^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}+\left (b^{2}\right )^{\frac {1}{4}}}{\left (b^{2}\right )^{\frac {1}{4}}}\right )+2 \left (b^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}-\left (b^{2}\right )^{\frac {1}{4}}}{\left (b^{2}\right )^{\frac {1}{4}}}\right )-8 \sqrt {b \tan \left (f x +e \right )}\right )}{4 f \tan \left (f x +e \right ) \sqrt {b \tan \left (f x +e \right )}}\) \(208\)
default \(-\frac {\sqrt {b \tan \left (f x +e \right )^{3}}\, \left (\left (b^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (-\frac {b \tan \left (f x +e \right )+\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {b^{2}}}{\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}-b \tan \left (f x +e \right )-\sqrt {b^{2}}}\right )+2 \left (b^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}+\left (b^{2}\right )^{\frac {1}{4}}}{\left (b^{2}\right )^{\frac {1}{4}}}\right )+2 \left (b^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (f x +e \right )}-\left (b^{2}\right )^{\frac {1}{4}}}{\left (b^{2}\right )^{\frac {1}{4}}}\right )-8 \sqrt {b \tan \left (f x +e \right )}\right )}{4 f \tan \left (f x +e \right ) \sqrt {b \tan \left (f x +e \right )}}\) \(208\)

[In]

int((b*tan(f*x+e)^3)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/f*(b*tan(f*x+e)^3)^(1/2)*((b^2)^(1/4)*2^(1/2)*ln(-(b*tan(f*x+e)+(b^2)^(1/4)*(b*tan(f*x+e))^(1/2)*2^(1/2)+
(b^2)^(1/2))/((b^2)^(1/4)*(b*tan(f*x+e))^(1/2)*2^(1/2)-b*tan(f*x+e)-(b^2)^(1/2)))+2*(b^2)^(1/4)*2^(1/2)*arctan
((2^(1/2)*(b*tan(f*x+e))^(1/2)+(b^2)^(1/4))/(b^2)^(1/4))+2*(b^2)^(1/4)*2^(1/2)*arctan((2^(1/2)*(b*tan(f*x+e))^
(1/2)-(b^2)^(1/4))/(b^2)^(1/4))-8*(b*tan(f*x+e))^(1/2))/tan(f*x+e)/(b*tan(f*x+e))^(1/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 272, normalized size of antiderivative = 1.07 \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=-\frac {f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (\frac {f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \tan \left (f x + e\right ) + \sqrt {b \tan \left (f x + e\right )^{3}}}{\tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) - f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \tan \left (f x + e\right ) - \sqrt {b \tan \left (f x + e\right )^{3}}}{\tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) + i \, f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (\frac {i \, f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \tan \left (f x + e\right ) + \sqrt {b \tan \left (f x + e\right )^{3}}}{\tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) - i \, f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \log \left (\frac {-i \, f \left (-\frac {b^{2}}{f^{4}}\right )^{\frac {1}{4}} \tan \left (f x + e\right ) + \sqrt {b \tan \left (f x + e\right )^{3}}}{\tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) - 4 \, \sqrt {b \tan \left (f x + e\right )^{3}}}{2 \, f \tan \left (f x + e\right )} \]

[In]

integrate((b*tan(f*x+e)^3)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(f*(-b^2/f^4)^(1/4)*log((f*(-b^2/f^4)^(1/4)*tan(f*x + e) + sqrt(b*tan(f*x + e)^3))/tan(f*x + e))*tan(f*x
+ e) - f*(-b^2/f^4)^(1/4)*log(-(f*(-b^2/f^4)^(1/4)*tan(f*x + e) - sqrt(b*tan(f*x + e)^3))/tan(f*x + e))*tan(f*
x + e) + I*f*(-b^2/f^4)^(1/4)*log((I*f*(-b^2/f^4)^(1/4)*tan(f*x + e) + sqrt(b*tan(f*x + e)^3))/tan(f*x + e))*t
an(f*x + e) - I*f*(-b^2/f^4)^(1/4)*log((-I*f*(-b^2/f^4)^(1/4)*tan(f*x + e) + sqrt(b*tan(f*x + e)^3))/tan(f*x +
 e))*tan(f*x + e) - 4*sqrt(b*tan(f*x + e)^3))/(f*tan(f*x + e))

Sympy [F]

\[ \int \sqrt {b \tan ^3(e+f x)} \, dx=\int \sqrt {b \tan ^{3}{\left (e + f x \right )}}\, dx \]

[In]

integrate((b*tan(f*x+e)**3)**(1/2),x)

[Out]

Integral(sqrt(b*tan(e + f*x)**3), x)

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.52 \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=-\frac {2 \, \sqrt {2} \sqrt {b} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (f x + e\right )}\right )}\right ) + 2 \, \sqrt {2} \sqrt {b} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (f x + e\right )}\right )}\right ) + \sqrt {2} \sqrt {b} \log \left (\sqrt {2} \sqrt {\tan \left (f x + e\right )} + \tan \left (f x + e\right ) + 1\right ) - \sqrt {2} \sqrt {b} \log \left (-\sqrt {2} \sqrt {\tan \left (f x + e\right )} + \tan \left (f x + e\right ) + 1\right ) - 8 \, \sqrt {b} \sqrt {\tan \left (f x + e\right )}}{4 \, f} \]

[In]

integrate((b*tan(f*x+e)^3)^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*sqrt(b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(f*x + e)))) + 2*sqrt(2)*sqrt(b)*arctan(-1/2*s
qrt(2)*(sqrt(2) - 2*sqrt(tan(f*x + e)))) + sqrt(2)*sqrt(b)*log(sqrt(2)*sqrt(tan(f*x + e)) + tan(f*x + e) + 1)
- sqrt(2)*sqrt(b)*log(-sqrt(2)*sqrt(tan(f*x + e)) + tan(f*x + e) + 1) - 8*sqrt(b)*sqrt(tan(f*x + e)))/f

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.76 \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=-\frac {1}{4} \, {\left (\frac {2 \, \sqrt {2} \sqrt {{\left | b \right |}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | b \right |}} + 2 \, \sqrt {b \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {{\left | b \right |}}}\right )}{f} + \frac {2 \, \sqrt {2} \sqrt {{\left | b \right |}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | b \right |}} - 2 \, \sqrt {b \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {{\left | b \right |}}}\right )}{f} + \frac {\sqrt {2} \sqrt {{\left | b \right |}} \log \left (b \tan \left (f x + e\right ) + \sqrt {2} \sqrt {b \tan \left (f x + e\right )} \sqrt {{\left | b \right |}} + {\left | b \right |}\right )}{f} - \frac {\sqrt {2} \sqrt {{\left | b \right |}} \log \left (b \tan \left (f x + e\right ) - \sqrt {2} \sqrt {b \tan \left (f x + e\right )} \sqrt {{\left | b \right |}} + {\left | b \right |}\right )}{f} - \frac {8 \, \sqrt {b \tan \left (f x + e\right )}}{f}\right )} \mathrm {sgn}\left (\tan \left (f x + e\right )\right ) \]

[In]

integrate((b*tan(f*x+e)^3)^(1/2),x, algorithm="giac")

[Out]

-1/4*(2*sqrt(2)*sqrt(abs(b))*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(abs(b)) + 2*sqrt(b*tan(f*x + e)))/sqrt(abs(b)))/
f + 2*sqrt(2)*sqrt(abs(b))*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(abs(b)) - 2*sqrt(b*tan(f*x + e)))/sqrt(abs(b)))/f
 + sqrt(2)*sqrt(abs(b))*log(b*tan(f*x + e) + sqrt(2)*sqrt(b*tan(f*x + e))*sqrt(abs(b)) + abs(b))/f - sqrt(2)*s
qrt(abs(b))*log(b*tan(f*x + e) - sqrt(2)*sqrt(b*tan(f*x + e))*sqrt(abs(b)) + abs(b))/f - 8*sqrt(b*tan(f*x + e)
)/f)*sgn(tan(f*x + e))

Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \tan ^3(e+f x)} \, dx=\int \sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^3} \,d x \]

[In]

int((b*tan(e + f*x)^3)^(1/2),x)

[Out]

int((b*tan(e + f*x)^3)^(1/2), x)